首页> 外文OA文献 >Sparse Fast Fourier Transform for Exactly and Generally K-Sparse Signals by Downsampling and Sparse Recovery
【2h】

Sparse Fast Fourier Transform for Exactly and Generally K-Sparse Signals by Downsampling and Sparse Recovery

机译:精确和一般K稀疏信号的稀疏快速傅里叶变换   通过下采样和稀疏恢复

摘要

Fast Fourier Transform (FFT) is one of the most important tools in digitalsignal processing. FFT costs O(N \log N) for transforming a signal of length N.Recently, Sparse Fourier Transform (SFT) has emerged as a critical issueaddressing how to compute a compressed Fourier transform of a signal withcomplexity being related to the sparsity of its spectrum. In this paper, a newSFT algorithm is proposed for both exactly K-sparse signals (with K non-zerofrequencies) and generally K-sparse signals (with K significant frequencies),with the assumption that the distribution of the non-zero frequencies isuniform. The nuclear idea is to downsample the input signal at the beginning;then, subsequent processing operates under downsampled signals, where signallengths are proportional to O(K). Downsampling, however, possibly leads to"aliasing." By the shift property of DFT, we recast the aliasing problem ascomplex Bose-Chaudhuri-Hocquenghem (BCH) codes solved by syndrome decoding. Theproposed SFT algorithm for exactly K-sparse signals recovers 1-\tau frequencieswith computational complexity O(K \log K) and probability at least1-O(\frac{c}{\tau})^{\tau K} under K=O(N), where c is a user-controlledparameter. For generally K-sparse signals, due to the fact that BCH codes are sensitiveto noise, we combine a part of syndrome decoding with a compressivesensing-based solver for obtaining $K$ significant frequencies. Thecomputational complexity of our algorithm is \max \left( O(K \log K), O(N)\right), where the Big-O constant of O(N) is very small and only a simpleoperation involves O(N). Our simulations reveal that O(N) does not dominate thecomputational cost of sFFT-DT.
机译:快速傅立叶变换(FFT)是数字信号处理中最重要的工具之一。 FFT花费O(N \ log N)来转换长度为N的信号。最近,稀疏傅里叶变换(SFT)成为解决如何计算信号复杂度与其频谱稀疏性有关的压缩傅里叶变换的关键问题。 。在非零频率分布均匀的前提下,针对精确的K稀疏信号(具有K个非零频率)和一般的K稀疏信号(具有K个重要频率),提出了一种newSFT算法。核心思想是在开始时对输入信号进行下采样;然后,后续处理在下采样信号下进行,其中信号长度与O(K)成正比。然而,下采样可能导致“混叠”。通过DFT的shift属性,我们将别名问题重塑为通过校正子解码解决的复杂Bose-Chaudhuri-Hocquenghem(BCH)码。针对K稀疏信号提出的SFT算法可恢复1- \ tau频率,计算复杂度为O(K \ log K),且概率至少为1-O(\ frac {c} {\ tau})^ {\ tau K} O(N),其中c是用户控制的参数。对于一般的K稀疏信号,由于BCH码对噪声敏感,我们将部分校正子解码与基于压缩感测的求解器结合起来,以获得$ K $有效频率。我们算法的计算复杂度为\ max \ left(O(K \ log K),O(N)\ right),其中O(N)的Big-O常数非常小,只有一个简单的运算涉及O(N) 。我们的仿真表明,O(N)不能控制sFFT-DT的计算成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号